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Abstract

We propose an estimation procedure for value-at-risk (VaR) and expected shortfall (TailVaR)
for conditional distributions of a time series of returns on a financial asset. Our approach combines
a local polynomial estimator of conditional mean and volatility functions in a conditional hetero-
cedastic autoregressive nonlinear (CHARN) model with Extreme Value Theory for estimating
quantiles of the conditional distribution. We investigate the finite sample properties of our method
and contrast them with alternatives, including the method recently proposed by McNeil and Frey
(2000), in an extensive Monte Carlo study. The method we propose outperforms the estimators
currently available in the literature. An evaluation based on backtesting was also performed.
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1 Introduction

The measurement of market risk to which financial institutions are exposed
has become an important instrument for market regulators, portfolio man-
agers and for internal risk control. As evidence of this growing importance,
the Bank of International Settlements (Basle Committee, 1996) has imposed
capital adequacy requirements on financial institutions that are based on mea-
surements of market risk. Furthermore, there has been a proliferation of risk
measurement tools and methodologies in financial markets (Risk, 1999). Two
quantitative and synthetic measures of market risk have emerged in the fi-
nancial literature, Value-at-Risk or VaR (RiskMetrics, 1995) and Expected
Shortfall or TailVaR (Artzner et al., 1999). From a statistical perspective
these risk measures have straightforward definitions. Let {Yt} be a stochas-
tic process representing returns on a given portfolio, stock, bond or market
index, where t indexes a discrete measure of time and Ft denotes either the
marginal or the conditional distribution (normally conditioned on the lag his-
tory {Yt−k}M≥k≥1, for some M = 1, 2, ...) of Yt. For 0 < α < 1, the α-VaR of Yt

is simply the α-quantile associated with Ft.1 Expected shortfall is defined as
EFy

t
(Yt) where the expectation is taken with respect to F y

t , the truncated dis-
tribution associated with Yt > y where y is a specified threshold level. When
the threshold y is taken to be α-VaR, then we refer to α-TailVaR.

Accurate estimation of VaR and TailVaR depends crucially on the ability
to estimate the tails of the probability density function ft associated with Ft.
Conceptually, this can be accomplished in two distinct ways: a) direct estima-
tion of ft, or b) indirectly through a suitably defined (parametric) model for
the tails of ft. Unless estimation is based on a correct specification of ft (up
to a finite set of parameters), direct estimation will most likely provide a poor
fit for its tails, since most observed data will likely take values away from the
tail region of ft (Diebold et al., 1998). As a result, a series of indirect estima-
tion methods based on Extreme Value Theory (EVT) has recently emerged,
including Embrechts et al. (1999), Longin (2000) and McNeil and Frey (2000).
These indirect methods are based on approximating only the tails of ft by an
appropriately defined parametric density function.

In the case where ft is a conditional density associated with a stochastic
process of returns on a financial asset, a particularly promising approach is the
two stage estimation procedure for conditional VaR and TailVaR suggested by
McNeil and Frey. They envision a stochastic process whose evolution can be
described as,

Yt = µt + σtεt for t = 1, 2, · · · , (1.1)

where µt is the conditional mean, σt is the square root of the conditional
variance (volatility) and {εt} is an independent, identically distributed pro-
cess with mean zero, variance one and marginal distribution Fε. Based on a
sample {yt}n

t=1, the first stage of the estimation produces µ̂t and σ̂t. In the
second stage, et = yt−µ̂t

σ̂t
for t = 1, ..., n are used to estimate a generalized

pareto density approximation for the tails of ft, which in turn produce VaR

1We will assume throughout this paper that Ft is absolutely continuous.
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and TailVaR sequences for the conditional distribution of Yt. Backtesting of
their method (using various financial return series) against some widely used
direct estimation methods that assume a specific form for the distribution of
εt (gaussian, student-t) have produced favorable, albeit specific results. Al-
though encouraging, results from backtesting could be specific to the series
and periods analyzed, providing limited information regarding the statisti-
cal properties of the two stage estimators for VaR and TailVaR. Furthermore,
since various first and second stage estimators could be proposed, the question
of how to best implement the two stage estimators remains unexplored.

In this paper we make three contributions to the growing literature on VaR
and TailVaR estimation. First, we propose a nonparametric markov chain
model (Härdle and Tsybakov, 1997 and Hafner, 1998) for {Yt} dynamics, as
well as an improved nonparametric estimation procedure for the conditional
volatility of the returns (Fan and Yao, 1998) in the first stage of estimation.
The objective is to have in place a model that is general enough to accom-
modate nonlinearities that have been regularly verified in empirical work (An-
dreou et al., 2001, Hafner, 1998, Patton, 2001 and Tauchen, 2001). If the
assumptions on the (parametric) structure of µt, σt and εt are not sufficiently
general, there is a distinct possibility that the resulting sequence of residuals
will be inadequate for the EVT based approach that follows in the second
stage. This might be particularly true for popular parametric models of con-
ditional mean and volatility of financial returns (GARCH, ARCH and their
many relatives), specifically with regards to volatility asymmetry.

Second, we propose an alternative estimation procedure for the EVT in-
spired parametric tail model in the second stage based on L-Moment Theory
(Hosking, 1990). The L-Moment estimators we use are easier and faster to
implement, and in finite samples outperform the constrained maximum like-
lihood estimation methods that have prevailed in the empirical finance liter-
ature. Since L-Moment estimation is not commonly used in econometrics or
empirical finance, we provide a brief introduction and discussion in section 2.

The third contribution we make to this literature is in the form of a Monte
Carlo study. As noted previously, the statistical properties of the VaR and
TailVaR estimators that result from the two stage procedure discussed above
are unknown both in finite samples and asymptotically. In addition, since it
is possible to envision various alternative estimators for the first and second
stages of the procedure, a number of final estimators of VaR and TailVaR
emerge. To assess their properties as well as to shed some light on their
relative performance we design an extensive Monte Carlo study. Our study
considers various data generating processes (DGPs) that mimic the empirical
regularities of financial time series, including asymmetric conditional volatil-
ity, leptokurdicity, infinite past memory and asymmetry of conditional return
distributions. The ultimate goal here is to provide empirical researchers with
some guidance on how to choose between a set of VaR and TailVaR estimators.
Our simulations indicate that the estimation strategy we propose outperforms,
as measured by the estimators’ mean squared error, the method proposed by
McNeil and Frey. We also backtest our estimation procedure on four financial
time series (Dow 30 Industrial Stock Price Index, Microsoft stock, Nasdaq and
the S&P 500) covering different time periods. Besides this introduction, the
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paper has five additional sections. Section 2 discusses the stochastic model
and proposed estimation. Section 3 describes the Monte Carlo design, section
4 summarizes the results and section 5 contains a backtesting evaluation of
the estimators considered. Section 6 provides a brief conclusion.

2 Stochastic Properties of {Yt} and Estimation

Estimation of discrete time stochastic processes such as (1.1) to model asset
price returns has proceeded by making specific assumptions on µt, σt and εt. It
is commonly assumed that the conditional mean µt and the conditional volatil-
ity σt have known parametric structure and that the conditioning set depends
only on past realizations of the process.2 In addition, to facilitate estimation,
specific distributional assumptions are normally made on εt. Estimation of
models such as ARCH, GARCH, EGARCH, IGARCH and many other de-
rived parametric variants follows this general description. The adequacy of
these models in fitting observed data, producing accurate forecasts, and the
ease with which they can be estimated depends largely on these assumptions.
In fact, the great profusion of ARCH type models is the result of an attempt
to accommodate empirical regularities that have been repeatedly observed in
financial return series. More recently, a number of papers have proposed non-
parametric and/or semiparametric modeling (Carroll, Härdle and Mammen,
2002, Härdle and Tsybakov, 1997, Masry and Tjøstheim, 1995) of µt, σt, as
well as less restrictive assumptions on εt. These flexible nonparametric models
for {Yt} are more difficult to estimate than their parametric counterparts, but
there can be substantial inferential gains if the alternative parametric models
are misspecified or unduly restrictive.

Our interest is in obtaining estimates for α-VaR and α-TailVaR associated
with the conditional density ft, where in general conditioning is on the filtra-
tion Mt−1 = σ({Ys : M < s ≤ t−1}), where −∞ ≤ M ≤ t−1. We denote such
conditional densities by f(Yt|Mt−1) for t = 2, 3, .... Letting q(α) = F−1

ε (α) be
the quantile of Fε and given that Fε(x) = F (µt + σtx|Mt−1) we have that
α-VaR for f(y|Mt−1) is given by,

F−1(α|Mt−1) = µt + σtq(α). (2.1)

Similarly, α-TailVaR for f(y|Mt−1) is given by,

E
(
Yt|Yt > F−1(α|Mt−1), Mt−1

)
= µt + σtE(εt|εt > q(α)). (2.2)

Hence, the estimation of α-VaR and α-TailVaR can be viewed as a process of
estimation for the unknown functionals in (2.1) and (2.2). We start by con-
sidering the following nonparametric specifications for µt, σt and the process
Yt. Assume that {(Yt, Yt−1)′} is a two dimensional strictly stationary process

2But see Shepherd (1996) for alternative modeling strategies.
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with conditional mean function E(Yt|Yt−1 = x) = m(x) and conditional vari-
ance E ((Yt − m(x))2|Yt−1 = x) = σ2(x) > 0. The process is described by the
following markov chain of order 1,

Yt = m(Yt−1) + σ(Yt−1)εt for t = 1, 2, ... , (2.3)

where εt is an independent strictly stationary process with unknown marginal
distribution Fε that is absolutely continuous with mean zero and unit vari-
ance. Note that the conditional skewness, α3(x) and kurtosis, α4(x) of the
conditional density of Yt given Yt−1 = x are given by, α3(x) = E(ε3t ) and
α4(x) = E(ε4t ). We assume that such moments exist and are continuous and
that m(x) and σ2(x) have uniformly continuous second order derivatives on
an open set containing x.

Recursion (2.3) is the conditional heterocedastic autoregressive nonlinear
(CHARN) model of Diebolt and Guègan (1993), Härdle and Tsybakov (1997)
and Hafner (1998). It is a special case (one lag) of the nonlinear-ARCH model
treated by Masry and Tjøstheim (1995). The CHARN model provides a gener-
alization for the popular GARCH(1,1) model in that m(x) is a nonparametric
function, and most importantly σ2(x) is not a linear function of Y 2

t−1. The
symmetry in Yt−1 of the conditional variance in GARCH models is a partic-
ularly undesirable restriction when modeling financial time series due to the
empirically well documented leverage effect (Chen, 2001, Ding et al., 1993,
Hafner, 1998 and Patton, 2001). However, (2.3) is more restrictive than tra-
ditional GARCH models in that its markov property restricts its ability to
effectively model the longer memory that is commonly observed in return pro-
cesses.3 Estimation of the CHARN model is relatively simple and provides
much of its appeal in our context.

2.1 First Stage Estimation

The estimation of m(x) and σ2(x) in (2.3) was considered by Härdle and Tsy-
bakov (1997). Unfortunately, their procedure for estimating the conditional
variance σ2(x) suffers from significant bias and does not produce estimators
that are constrained to be positive. Furthermore, the estimator is not asymp-
totically design adaptive to the estimation of m, i.e., the asymptotic properties
of their estimator for conditional volatility is sensitive to how well m is esti-
mated. We therefore consider an alternative estimation procedure due to Fan
and Yao (1998), which is described as follows. First, we estimate m(x) using
the local linear estimator of Fan (1992). Let W (x), K(x) : $ → $ be sym-
metric kernel functions, y in the support of the conditional density of Yt and

3The model of Masry and Tjøstheim (1995) and equations (2) and (3) in Carrol, Härdle
and Mammen (2002) provide a full nonparametric generalization of ARCH and GARCH(1,1)
models. However, nonparametric estimators for the latter model are unavailable and for the
former, convergence of the proposed estimators for m and σ2 is extremely slow as the number
of lags in the conditioning set increases (curse of dimensionality).
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h(n), h1(n) be sequences of positive real numbers - bandwidths - such that
h(n), h1(n) → 0 as n → ∞. Let

(ζ̂, ζ̂1)
′ = argminζ,ζ1

n∑

t=2

(yt − ζ − ζ1(yt−1 − y))2K

(
yt−1 − y

h(n)

)
,

then the local linear estimator of m(y) is m̂(y) = ζ̂(y). Second, let r̂t =
(yt − m̂(yt−1))2, and define,

(η̂, η̂1)
′ = argminη,η1

n∑

t=2

(r̂t − η − η1(yt−1 − y))2W

(
yt−1 − y

h1(n)

)
,

then the local linear estimator of σ2(y) is σ̂2(y) = η̂(y).
It is clear that an important element of the nonparametric estimation of m

and σ2 is the selection of the sequence of bandwidths h(n) and h1(n). We select
the bandwidths using the data driven plug-in method of Ruppert et al. (1995)
and denote them by ĥ(n) and ĥ1(n). ĥ(n) and ĥ1(n) are obtained based on
the following regressand-regressor sequences {(yt, yt−1)}n

t=2 and {(r̂t, yt−1)}n
t=2,

respectively. This bandwidth selection method is theoretically superior to the
popular cross-validation method and is a consistent estimator of the (optimal)
bandwidth sequence that minimizes the asymptotic mean integrated squared
error of m̂ and σ̂2.4 We chose a common kernel function (gaussian) in im-
plementing our estimators. In the context of the CHARN model the first
stage estimators for µt and σ2

t in (2.1) and (2.2) are respectively m̂(yt−1) and
σ̂2(yt−1).

2.2 Second Stage Estimation

In the second stage of the estimation we obtain estimators for q(α) and
E(εt|εt > q(α)). The estimation is based on a fundamental result from extreme
value theory, which states that the distribution of the exceedances of any ran-
dom variable (ε) over a specified nonstochastic threshhold u, i.e, Z = ε−u can
be suitably approximated by a generalized pareto distribution - GPD (with
location parameter equal to zero) given by,

G(x; β,ψ) = 1 −
(

1 + ψ
x

β

)−1/ψ

, x ∈ D (2.4)

where D = [0,∞) if ψ ≥ 0 and D = [0,−β/ψ] if ψ < 0.5

4See Ruppert et al. (1995) and Fan and Yao (1998). For an alternative estimator of
σ2(x) see Ziegelmann (2002).

5See Pickands (1975) and Embrechts et al. (1997) for a complete characterization of the
result.
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First stage estimators µ̂t and σ̂2
t can be used to produce a sequence of

standardized residuals
{
et = yt−µ̂t

σ̂t

}n

t=1
which can be used to estimate the tails

of fε based on (2.4). For this purpose we order the residuals such that ej:n is
the jth largest residual, i.e., e1:n ≥ e2:n ≥ ... ≥ en:n and obtain k < n excesses
over ek+1:n given by {ej:n − ek+1:n}k

j=1, which will be used for estimation of
a GPD. By fixing k we in effect determine the residuals that are used for
tail estimation and randomly select the threshold. It is easy to show that for
α > 1−k/n and estimates β̂ and ψ̂, q(α) and E(εt|εt > q(α)) can be estimated
by,

q̂(α) = ek+1:n +
β̂

ψ̂

((
1 − α
k/n

)−ψ̂

− 1

)
(2.5)

and for ψ < 1

Ê(εt|εt > q(α)) = q̂(α)

(
1

1 − ψ̂
+
β̂ − ψ̂ek+1:n

(1 − ψ̂)q̂(α)

)

. (2.6)

It is clear that these estimators and their properties depend on the choice of
k. This question has been studied by McNeil and Frey (2000) and is also
addressed in the Monte Carlo study in section 4 of this paper. Combining the
estimators in (2.5) and (2.6) with first stage estimators, and using (2.1) and
(2.2) gives estimators for α− V aR and α− TailV aR.

2.3 L-Moment Estimation of β and ψ

Given the results in Smith (1984, 1987), estimation of the GPD parameters
has normally been done by constrained maximum likelihood (ML). Here we
propose an alternative estimator based on L-Moment Theory (Hosking, 1990
and 1997). Traditionally, raw moments have been used to describe the location,
scale, and shape of distribution functions. L-Moment Theory provides an
alternative approach that exhibits a number of desirable properties. Here, we
provide a brief summary and justification for its use and direct the reader to
Hosking’s papers for a thorough coverage and understanding.

Let Fε be a distribution function associated with a random variable ε and
q(u) : (0, 1) → $ its quantile. The rth L-moment of ε is defined as,

λr =

∫ 1

0

q(u)Pr−1(u)du for r = 1, 2, ... (2.7)

where Pr(u) =
∑r

k=0 pr,kuk and pr,k = (−1)r−k(r+k)!
(k!)2(r−k)! , which contrasts with the

traditional raw moments µr =
∫ 1
0 q(u)rdu. Theorem 1 in Hosking (1990) gives

the following justification for using L-moments to describe distributions: a) µ1
is finite if and only if λr exist for all r; b) a distribution Fε with finite µ1 is

6 Studies in Nonlinear Dynamics & Econometrics Vol. 10 [2006], No. 2, Article 4

http://www.bepress.com/snde/vol10/iss2/art4



uniquely characterized by λr for all r. Thus, a distribution can be characterized
by its L-moments even if raw moments of order greater than 1 do not exist,
and most importantly, this characterization is unique, which is not true for
raw moments.

It is easily verified that λ1 = µ1, therefore the first L-moment when it
exists provides the traditionally used measure of location for a distribution.
As pointed out by Hosking (1990 and 1997), λ2 is up to a scalar the expectation
of Gini’s mean difference statistic, therefore providing a measure of scale that
differs from the traditional variance - µ2 − µ2

1 by placing smaller weights on
differences between realizations of the random variable. Hosking (1989) shows
that if µ1 exists −1 < τ3 ≡ λ3

λ2
< 1 with τ3 = 0 for symmetric distributions,

providing a bounded measure of skewness that is less sensitive to the extreme
tails of the distribution than the traditional (unbounded) measure of skewness

given by µ3−3µ2µ1+2µ3
1

(µ2−µ2
1)3/2 . Similarly, −1 < τ4 ≡ λ4

λ2
< 1 can be interpreted as a

bounded measure of kurtosis (see Oja, 1981) that is less sensitive to the extreme
tails of the distribution than the traditional (unbounded) measure given by
µ4−4µ3µ1+6µ2µ2

1−3µ4
1

(µ2−µ2
1)2

. Hence, contrary to traditional measures of location and

shape, L-moment based measures of scale, skewness and kurtosis do not require
the existence of higher order raw moments, allowing for synthetic measures of
distribution shape even when higher order raw moments do not exist. The use
of these alternative measures of shape can be particularly useful in empirical
finance and in financial risk management in particular.

In addition, L-moments can be used to estimate a finite number of pa-
rameters θ ∈ Θ that identify a member of a family of distributions. Suppose
{Fε(θ) : θ ∈ Θ ⊂ $p}, p a natural number, is a family of distributions which is
known up to θ. A sample {εt}T

t=1 is available and the objective is to estimate θ.
Since, λr , r = 1, 2, 3... uniquely characterizes F , θ may be expressed as a func-
tion of λr. Hence, if estimators λ̂r are available, we may obtain θ̂(λ̂1, λ̂2, ...).
From (2.7), λr+1 =

∑r
k=0 pr,kβk where βk =

∫ 1
0 q(u)ukdu for r = 0, 1, 2, · · · .

Given the sample, we define εk,T to be the kth smallest element of the sample,
such that ε1,T ≤ ε2,T ≤ ... ≤ εT,T . An unbiased estimator of βk is

β̂k = T−1
T∑

j=k+1

(j − 1)(j − 2)...(j − k)

(T − 1)(T − 2)...(T − k)
εj,T

and we define λ̂r+1 =
∑r

k=0 pr,kβ̂k for r = 0, 1, · · · , T − 1.
In particular, if Fε is a generalized pareto distribution with θ = (µ, β,ψ), it

can be shown that µ = λ1 − (2−ψ)λ2, β = (1−ψ)(2−ψ)λ2, ψ = −1−3(λ3/λ2)
1+(λ3/λ2)

.

In our case, where µ = 0, β = (1−ψ)λ1, ψ = 2−λ1/λ2 we define the following
L-moment estimators for ψ and β,

ψ̂ = 2 − λ̂1

λ̂2

and β̂ = (1 − ψ̂)λ̂1.
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Similar to ML estimators, these L-moment parameter estimators are
√

T -
asymptotically normal for ψ < 0.5. However, they are much easier to com-
pute than ML estimators as no numerical optimization or iterative procedure
is necessary. Although asymptotically inefficient relative to ML estimators,
L-moment based parameter estimators have reasonably high asymptotic effi-
ciency (see Hosking, 1990). For the GPD considered here, asymptoic efficiency
is always higher than 70 percent when 0 < ψ < 0.3. Similar levels of asymp-
totic efficiency can also be verified in the estimation of Generalized Extreme
Value - GEV (Hosking et al., 1985), Gumbel and Normal distributions.

More important, from a practical perspective, is that L-Moment based
parameter estimators can outperform ML (based on mean squared error) in
finite samples as indicated by Hosking et al. (1985), Hosking (1987) and the
Monte Carlo we conduct in section 3. The results are not entirely surprising
as the efficiency of ML estimators is attained only asymptotically. In fact, as
observed by Hosking and Wallis (1987), it may be necessary to deal with very
large samples before asymptotic distributions provide useful approximations to
their finite sample equivalents. This seems to be especially true for GPD and
GEV estimation, but it can also be verified in other more general contexts.6

2.4 Alternative First Stage Procedures

Here we define two alternatives to the first stage estimation discussed above.
The first is the quasi maximum likelihood estimation (QMLE) method used
by McNeil and Frey. In essence it involves estimating by maximum likelihood
the following regression model,

Yt = θ1Yt−1 + σtεt for t = 1, 2, ... (2.8)

where εt ∼ NIID(0, 1) and σ2
t = γ0 + γ1(Yt−1 − θ1Yt−2)2 + γ2σ2

t−1. We will
refer to this procedure as GARCH-N (Bollerslev, 1986). The second alternative
estimator we consider is identical to the first procedure but assumes that the
εt are iid with a standardized Student-t density, denoted by fs(ν), where ν > 2
is a parameter to be estimated together θ1, γ0, γ1, γ2 by maximum likelihood.
This estimator has gained popularity in that the Yt inherits the leptokurdicity
of εt, a characteristic of financial asset returns that have been abundantly
reported in the literature. We refer to this procedure as GARCH-T.

Obviously, a number of other first stage estimators can be considered.7 Our
choice of alternative estimators to be considered in the Monte Carlo study that
follows was mostly guided not by the desire to be exhaustive, but rather an
attempt to represent what is commonly used both in the empirical finance
literature and in practice.

6See, e.g., Hannan (1987) and Mandy and Martins-Filho (2001).
7For a list of many alternatives see Gourieroux (1997).
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3 Monte Carlo Design

In this section we describe and justify the design of the Monte Carlo study.
Our study has two main objectives. First, to provide evidence on the finite
sample distribution of the various estimators proposed in the previous section
and second, to evaluate the relative performance of the estimators. This is,
to our knowledge, the first evidence on the finite sample performance of the
two-stage estimation procedures described above. Second, to provide applied
researchers with some guidance over which estimators to use when estimating
VaR and TailVaR.

In designing our Monte Carlo experiments we had two goals. First, the data
generating process (DGP) had to be flexible enough to capture the salient
characteristics of time series on asset returns. Second, to reduce specificity
problems, we had to investigate the behavior of the estimators over a number
of relevant values and specifications of the design parameter and functions in
the Monte Carlo DGP.

3.1 The base DGP

The main DGP we consider is a nonparametric GARCH model first proposed
by Hafner (1998) and later studied by Carroll, Härdle and Mammen (2002).
We assume that {Yt} is a stochastic process representing the log-returns on
a financial asset with E(Yt|Mt−1) = 0 and E(Y 2

t |Mt−1) = σ2
t , where Mt−1 =

σ({Ys : M < s ≤ t − 1}), where −∞ ≤ M ≤ t − 1. We assume that the
process evolves as,

Yt = σtεt for t = 1, 2, ... (3.1)

σ2
t = g(Yt−1) + γσ2

t−1 (3.2)

where g(x) is a positive, twice continuously differentiable function and 0 <
γ < 1 is a parameter. {εt} is assumed to be a sequence of independent and
identically distributed random variables with the skewed Student-t density
function. This density was proposed by Hansen (1994) and is given by

f(x; v,λ) =






bc
(
1 + 1

v−2

(
bx+a
1+λ

)2
)−(v+1)/2

for x ≥ −a/b

bc
(
1 + 1

v−2

(
bx+a
1−λ

)2
)−(v+1)/2

for x ≤ −a/b

where c ≡ Γ( ν+1
2 )

Γ( ν
2 )
√

π(ν−2)
, a ≡ 4λc

(
ν−2
ν−1

)
, b ≡

√
1 + 3λ2 − a2. Hansen proved

that E(εt) = 0 and V (εt) = 1. The following lemma gives expressions for the
skewness and kurtosis of the asymmetric Student-t density.

Lemma 1: Let f(x; v,λ) be the skewed t-Student density function of Hansen
(1994). Let κi for i = 1, 2, 3, 4 be as defined in Proposition 1 in the appendix,
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then the skewness α3 of the density is given by,

α3 =
8κ3

b3
(λ3 + λ) − 6κ2a

b3
(λ3 + 3λ) +

12a2κ1

b3
λ− a3 + 3a(1 − λ)3

b3
,

and its kurtosis is given by,

α4 =
κ4

b4
(2λ5 + 20λ3 + 10λ) − 32aκ3

b4
(λ3 + λ) +

12a2κ2

b4
(λ3 + 3λ) − 16a3λκ1

b4

+
1

b4

(
a4 +

3(1 − λ)5(v − 2)

v − 4
+ 6a2(1 − λ)3

)
.

It is clear from these expressions that skewness and kurtosis are controlled
by the parameters λ and ν. When λ = 0 the distribution is a symmetric
standardized Student-t. The α-VaR for εt was obtained by Patton (2001) and
is given by,

α−V aR =






1−λ
b

√
ν−2
ν F−1

s

(
α

1−λ ; ν
)
− a

b for 0 < α< 1−λ
2

1+λ
b

√
ν−2
ν F−1

s

(
0.5 + 1

1+λ

(
α− 1−λ

2

)
; ν

)
− a

b for 1−λ
2 ≤ α < 1

,

where Fs is the cumulative distribution of a random variable with Student-t
density and ν degrees of freedom. In the following lemma we obtain α-TailVaR
for εt when α ≥ −a

b .

Lemma 2: Let X be a random variable with density function given by an
asymmetric Student-t and define the truncated density,

fX>z(x; v,λ) =
f(x; v,λ)

1 − F (z)
for z ≥ −a/b

where F is the distribution function of X. Then, the expected shortfall of X,
E(X|X > z) =

∫ ∞
z xfX>z(x; v,λ)dx is given by,

E(X|X > z) = (1 − F (z))−1

(
c(1 + λ)2

b

(
v − 2

v − 1

)
β−(v−1)/2

− (1 + λ)a

b

(
1 − Fs

(
bz + a

1 + λ

√
v

v − 2

)))

where β =
(
cos

(
arctan

(
bz+a

(1+λ)
√

v−2

)))2
and Fs is the cumulative distribution

of a random variable with Student-t density and v degrees of freedom.
Under (3.1), (3.2) and the assumptions on εt, it is easy to verify that

the conditional skewness α3(Yt|Mt−1) = E(ε3t ) and the conditional kurtosis
α4(Yt|Mt−1) = E(ε4t ).
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This DGP incorporates many of the empirically verified regularities nor-
mally ascribed to returns on financial assets: (1) asymmetric conditional vari-
ance with higher volatility for large negative returns and smaller volatility
for positive returns (Hafner, 1998); (2) conditional skewness (Aı̈t-Sahalia and
Brandt, 2001, Chen, 2001, Patton, 2001); (3) Leptokurdicity (Tauchen, 2001,
Andreou et al., 2001); and (4) nonlinear temporal dependence. Our objective,
of course, was to provide a DGP design that is flexible enough to accom-
modate these empirical regularities and to mimic the properties observed in
return time series.

We designed a total of 144 experiments over the base DGP described above.
Table 1 provides a numbering scheme for the experiments that is used in the
description of the Monte Carlo results. In summary, there are two sample sizes
considered for the first stage of the estimation nS = {500, 1000}, three values
for γ, nγ = {0.3, 0.6, 0.9}, three values for λ, nλ = {0,−0.25,−0.5}, two values
for α, nα = {0.95, 0.99}, two values for the number of observations used in the
second stage of the estimation k, nk = {60, 100}, and two functional forms for
g(x), which we denote by g1(x) = 0.5+ exp(−4x)

1+exp(−4x)
and g2(x) = 1−0.9exp(−2x2).

The total number of replications in the Monte Carlos is held fixed at 1000 for
all experiments. Graphs 1A and 1B in Appendix 2 provide the general shape
for these volatility specifications together with that implied by GARCH type
models. We now turn to the results of our Monte Carlo.

4 Results

We considered a total of seven estimators for VaR and TailVaR. There are
three first stage estimators: the nonparametric method we propose, GARCH-
N, GARCH-T; and two second stage estimators: the L-moments based esti-
mator we propose and the ML estimator. In addition we consider a direct
estimation method that estimates VaR and TailVaR using our nonparametric
method in the first stage and assuming the estimated εt in (3.1) is indeed dis-
tributed as an asymmetric Student-t density. In this case, all parameters are
estimated via maximum likelihood. Since this direct ML estimator is based on
a correct specification of the conditional density we expect it to outperform all
other methods provided that the nonparametric residuals from the first stage
are suitable estimates for εt. Our focus is on the remaining estimators, which
are all based on stochastic models that are misspecified relative to the DGPs
considered. Specifically, the nonparametric estimator is based on a model in
which the volatility function is assumed to depend only on Yt−1 rather than
the entire history of time series (markov property of order 1). The GARCH
type models are misspecified in that g in our DGPs is not linear in Yt−1. We
implement our nonparametric local linear estimator using a Gaussian kernel
and a theoretical optimal bandwidth. A summary of simulation results is pro-
vided in Appendix 2.

General Results on Relative Performance: Tables 2A-2F provide the
ratio between an estimator’s mean squared error (MSE) and the MSE for the
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direct estimation method, which we call relative MSE, for n = 1000. As ex-
pected, in virtually all experiments, relative MSE> 1 indicating that the direct
estimation method (correctly specified DGP) outperforms all other estimators
for VaR and TailVaR. Exceptions occur almost exclusively in experiments with
γ = 0.9, which is expected, given that for these experiments the nonparame-
teric residuals from the first stage are most likely to be poor estimates for the
true errors due to the strong memory of the volatility process. Interestingly,
there are a series of very general conclusions that can be reached regarding the
relative performance of the other estimators:8 1) for both VaR and TailVaR
estimation and all estimators considered, second stage estimation based on
L-moments produces smaller MSE than when based on ML. This conclusion
holds for most experiments, volatilities and λ. The performance of ML based
estimators seems to improve when k = 100, n and in estimating TailVaR, but
not significantly. The improvement of ML based estimators when k = 100 is
consistent with what one one expect from asymptotic theory and also confirms
the results in Hosking and Wallis (1987). 2) VaR and TailVaR estimators based
on the nonparametric method produce lower MSE for virtually all experimen-
tal designs with γ = 0.3, 0.6. Estimators based on GARCH-T are consistently
the second best option. For experiments with γ = 0.9, GARCH-T estimator
performs better, which is to be expected since in this case the true volatility
in the DGP deviates most from markov property of order 1 assumed in the
nonparameteric model. We detect no decisive impact of λ, n and other design
parameters on the relative performance of the estimators.

These results generally indicate that the combined nonparametric/L - mo-
ment estimation procedure we propose is superior to GARCH/ML type esti-
mators in virtually all experimental designs with low to moderate γ parame-
ters. Furthermore, since our estimator assumes that {Yt} is markov of order
1, contrary to GARCH type models, our results reveal that except in the
most extreme case, where γ = 0.9 nonlinearities in volatility may be more
important to VaR and TailVaR estimation performance than accounting for
the non-markov property of the series. In fact, given that g1(x) produces con-
ditional volatilities that are similar to those empirically obtained in Hafner
(1998), it seems warranted to conclude that this would indeed be the case
for some typical time series of asset returns. Support for this conjecture is
given on section 5 where a backtesting evaluation of the estimators using some
common time series of asset returns is performed.

We also found that in finite samples, VaR and TailVaR estimators based
on more sophisticated nonparametric estimators in the first stage, such as
that proposed by Carroll, Härdle and Mammen (2002), did not outperform
our nonparametric procedure in finite samples. To provide some numerical
evidence, we implement the first stage volatility estimator proposed by Carroll
et al. (2002) with J = 2, using their proposed method based on least squares,
employing the Rule-of-Thumb bandwidth selection for the bivariate marginal
integration estimation as in Linton and Nielson (1995). In the second stage we
use the estimated residual to calculate the VaR and TailVaR using L-Moments.
We compare the performance of their estimator and our nonparametric/L-

8Unless explicitly noted conclusions are also valid for the cases when n = 500.
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Moments estimator based on MSE for a subset of the 144 experiments. Here we
report only the representative results that emerge from the fifth experimental
design with λ = −0.25 and n = 500. When the volatility function is g1(x), the
MSE for out method MSENP = 0.227 and for their method MSEC = 0.661 in
estimating VaR, MSENP = 0.865 and MSEC = 1.793 in estimating TailVaR.
When the volatility function is g2(x), MSENP = 0.196 and MSEC = 0.890 in
estimating VaR, MSENP = 0.457 and MSEC = 3.769 in estimating TailVaR.
The results in terms of the relative performances are not changed when Carroll
et al.’s method based on errors in variables/minimum distance in the first stage
or ML in the second stage is employed.

Having derived some general conclusions regarding the relative performance
of the various estimators, we now turn to a discussion of their bias, MSE and
how these measures are impacted by the experimental designs.

Results on MSE: Tables 3A-F show MSE for VaR and TailVaR based on
the different estimators considered. Results reported in the tables are based
on using L-Moments in the second stage. Unless explicitly mentioned, the
conclusions are also valid for the cases where ML is used in the second stage.
We first examine the impact of the sample size n. The MSE for the nonpara-
metric method falls with increased n for virtually all design parameters and
volatilities. There is weak evidence that this regularity holds for GARCH type
estimators, with violations showing up more frequently for GDP based on g2,
see tables 3D-F.

The number of observations used in the second stage - k−has no distin-
guishable impact on the MSE for any of the estimators considered holding all
other design parameters fixed. This is verified by comparing rows 1 and 2,
3 and 4, and so on until rows 11 and 12 in tables 3A-F. Insensitivity of the
GARCH-N/ML VaR estimator to changes in k in this range was also obtained
in a simulation study by McNeil and Frey (2000). This is most likely due to
the range of k we have used.

Ceteris Paribus, the estimators’ MSE increases for VaR and TailVaR when
the quantile increses from 0.95 to 0.99 across all design parameters and volatil-
ities. This can be verified by comparing rows 1 and 3, 2 and 4, and so on until
rows 10 and 12 in tables 3A-F. Thus, it seems that estimation of VaR and
TailVaR associated with larger quantiles is more difficult for all estimation
methods.

As expected, the MSE for the nonparametric estimator of VaR and TailVaR
falls with the value of γ. This can be verified by comparing rows 1, 5 and 9; 2,
6 and 10, and so on until 4, 8 and 12 in tables 3A-F. However, the impact of γ
on MSE of GARCH type estimators is ambiguous for DGP based on g2 across
different design parameters, with weak evidence that GARCH type estimators
perform better for DGP based on g1 with smaller value of γ.

The MSE for all estimators of VaR and TailVaR estimators decrease sig-
nificantly with λ across all parameter designs and volatilities, specially when
considering the nonparametric procedure. This sensitivity of the MSE to λ
is most likely explained by the fact that in our DGPs λ ≤ 0 and the data
is skewed towards the positive quadrant. As such, in the second stage esti-
mation we are selecting data that are larger than the kth order statistic and
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considering the 95 and 99 percent quantiles. Hence, more representative data
of tail behavior is used when λ decreases. Finally, the MSE across all design
parameters, volatilities and estimators is significantly larger when estimating
TailVaR compared to VaR. Hence, our simulations seem to indicate that the
estimation of TailVaR is more difficult than VaR, at least as measured by
MSE. The result is largely due to increased variance in TailVaR estimation
rather than bias, since as indicated below, there is no clear pattern for the
change in the bias.

Results on Bias: The impact of various design parameters on the bias in
VaR and TailVaR estimation across the procedures, design parameters and
volatilities is much less clear and definitive than that on MSE.9 In particular,
as the sample size n or k increases there is no clear impact on bias. Hence, the
reductions on MSE with increased n that are reported above are largely due
to a reduction on variance. The most definite result regarding estimation bias
we could infer from the simulations is that all estimation procedures seem to
have a positive bias in the estimation of both VaR and TailVaR. We illustrate
this fact by plotting the bias for the two best estimators (Nonparametric and
GARCH-T) for λ = −0.25 and n = 1000 across all experimental designs,
which are represented in the horizontal axis. Graphs 2A and 2C illustrate the
bias in estimating VaR for g1 and g2, respectively, and we note that virtually
all biases are positive. Graphs 2B and 2D illustrate the bias in estimating
TailVaR for g1 and g2, respectively, and once again we observe that virtually
all biases are positive.10 The exceptions occur exclusively for experimental
designs that have γ = 0.9. The other regularity that we observe is that in
most DGPs the nonparametric method seems to have smaller bias than the
GARCH type estimator. Once again, violations occur when γ is large.

5 Evaluation via Backtesting

In this section we backtest the estimators considered in the previous section
using four historical daily series on the following price indices: (1) Dow 30
Industrial Stock Price Index from November 1996 to March 2000; (2) Mi-
crosoft Corporation common stock price from May 1998 to May 2002; (3)
Nasdaq composite index from February 1981 to January 1985, and the (4)
Standard and Poor’s 500 composite stock price index from January 1965 to
January 1969. The data are obtained from website http://www.economy.com
and http://finance.yahoo.com. The return for each series is calculated as
yt = 100 × ln( Pt

Pt−1
), where Pt refers to the price level at time t.

To perform the backtesting of the estimators on a data set {y1, y2, · · · , ym},
we utilize the previous n observations {yt−n+1, yt−n+2, · · · , yt} to estimate the
α−VaR by F̂−1(α|Mt) and the α−TailVaR by Ê(Yt+1|Yt+1 > F−1(α|Mt), Mt)
for nα = {0.95, 0.99}, where 0 < n < m, t ∈ T = {n, n + 1, · · · , m − 1},

9Tables similar to 3A-F for the bias are available upon request.
10Similar graphs result from λ = 0,−0.5 and n = 500
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F̂−1(α|Mt) = µ̂t+1 + σ̂t+1q̂(α) and Ê(Yt+1|Yt+1 > F−1(α|Mt), Mt) = µ̂t+1 +
σ̂t+1Ê(εt+1|εt+1 > q(α)). Henceforth, for ease of notation we put F̂−1(α|Mt) ≡
ŷt+1
α and Ê(Yt+1|Yt+1 > F−1(α|Mt), Mt) ≡ St+1

α . We fix m = 1000, n = 500
and let k = 100 as suggested by the simulation study of McNeil and Frey
(2000). Graph 3 provides the returns for one of our series (Dow 30 Indus-
trial Stock price index against time) together with the VaR estimated by
Nonparametric/L-M and GARCH-T/L-M methods. We note that GARCH-
T/L-M seems to provide slightly smaller VaR estimates than Nonparametric/L-
M estimator.

On backtesting the estimators of α−VaR, we define a violation as the
event {yt+1 > yt+1

α }. Under the null hypothesis that the return dynamics
on yt are correctly specified for a certain model/estimator, It ≡ I{yt+1 >
yt+1
α } ∼ Bernoulli(1 − α) where I(·) is the indicator function. Consequently,

W =
∑

t∈T It ∼ Binomial(N, 1 − α), where N = Card(T ) is the cardinality
of set T . We perform a two sided test with the alternative hypothesis that the
quantile is not correctly estimated with too many or too few violations. Under
the null hypothesis the empirical version of the test statistic W , given by as
ŵ =

∑
t∈T I{yt+1 > ŷt+1

α } is a drawing from a Binomial(N, 1−α). We report
the violations numbers together with the p-values for different estimators in
Table 4. The performance of different estimators are quite similar for the four
historical series considered and the only rejection of the null hypothesis occurs
for GARCH-T/ML method when estimating 99%-VaR for the Nasdaq series.
Our nonparametric methods seem to outperform the others in estimating the
Dow Jones’ VaR and Microsoft’s VaR for both values of α and in estimating
99%-VaR of Nasdaq.

In the case of α−TailVaR, instead of using violation numbers to construct
test statistics as in α−VaR, we consider the normalized difference between
yt+1 and St+1

α ,

rt+1 =
yt+1 −E(Yt+1|Yt+1 > F−1(α|Mt), Mt)

σt+1
= εt+1 − E(εt+1|εt+1 > q(α)),

since α−TailVaR gives the expected magnitude for returns given that viola-
tions have occured. If the return dynamics are correctly specified, given that
yt+1 > F−1(α|Mt), rt+1 is independent and identically distributed with mean
zero. Hence, we use the estimated residuals {r̂t+1 : t ∈ T and yt+1 > ŷt+1

α },
where

r̂t+1 =
yt+1 − St+1

α

σ̂t+1
=

yt+1 − µ̂t+1

σ̂t+1
− Ê(εt+1|εt+1 > q(α)).

Without making specific distribution assumptions on the residuals, we per-
form a one-sided bootstrap test as described in Efron and Tibshirani (1993,
pp. 224-227) to test the null hypothesis that the mean of the residuals is zero
against the alternative that the mean is greater than zero, since underestimat-
ing α−TailVaR is likely to be the direction of interest. The p-values of the tests
for different estimators are shown in Table 5. Given a 10% significance level
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for the test, our nonparametric/L-moments method for estimating α−TailVaR
is the only estimation procedure for which the null hypothesis is not rejected.
In total, the null hypothesis for GARCH-T type estimators was rejected 5 out
of 16 times, and for GARCH-N type estimators, the null hypothesis is rejected
9 out of 16 times. The empirical evidence seems to confirm the results from
our Monte-Carlo study, supporting our conjecture that for the series consid-
ered in backtesting, nonlinearities may be more important to model than long
memory in determing the stochastic structure of volatility.

6 Conclusion

In this paper we have proposed a novel way to estimate VaR and TailVaR, two
measures of risk that have become extremely popular in the empirical, as well
as theoretical finance literature. Our procedure combines the methodology
originally proposed by McNeil and Frey (2000) with nonparametric models of
volatility dynamics and L-moment estimation. A Monte Carlo study that is
based on a DGP that incorporates empirical regularities of returns on financial
time series reveals that our estimation method outperforms the methodology
put forth by McNeil and Frey. To the best of our knowledge, this is the first
evidence on the finite sample performance of VaR and TailVaR estimators for
conditional densities. It is important at this point to highlight the fact that
asymptotic results for these types of estimators are currently unavailable. In
addition, results from our simulations seem to indicate that nonlinearities in
volatility dynamics may be very important in accurately estimating measures
of risk. In fact, our simulations indicate that accounting for nonlinearities may
be more important than richer modeling of dependency. Our proposed estima-
tion procedure was also evaluated via backtesting, and the results, although
specific to the series analyzed seem to confirm the more general conclusions of
the Monte Carlo.
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Appendix 1

Proposition 1 : Let g(y; v) = c
(
1 + 1

v−2
y2

)m
where c, m ∈ $, v > 2 a pos-

itive integer and −∞ < y < ∞. Let κp =
∫ ∞
0

ypg(y; v)dy for p = 1, 2, 3, 4.
Then,

κ1 = c(v−2)
2

∫ 1
0 u−m−2du,

κ2 = c(v−2)3/2

2 (B[1/2,−m − 3/2] − B[1/2,−m − 1/2]) ,

κ3 = c(v−2)2

2

(∫ 1

0
u−m−3du −

∫ 1

0
u−m−2du

)
,

κ4 = c(v−2)5/2

2 (B[1/2,−m − 5/2] − 2B[1/2,−m − 3/2] + B[1/2,−m− 1/2]),

where B[α, β] is the beta function.

Proof: Let θ = (v − 2)−1/2y, then κ1 = c(v − 2)
∫ ∞

0 θ(1 + θ2)mdθ. Now,
put θ = tan(w) and using the fact sin(w)2 = 1 − cos(w)2 and 1 + tan2(w) =
cos(w)−2, we have

κ1 = −c(v − 2)

∫ π/2

0

cos(w)−2m−3dcos(w) =
c(v − 2)

2

∫ 1

0

u−m−2du.

For κ2 we have, κ2 = c(v − 2)3/2
∫ ∞

0
θ2(1 + θ2)mdθ. Using the same transfor-

mations above, we have

κ2 = c(v − 2)3/2

(∫ π/2

0

cos(w)−2m−4dw −
∫ π/2

0

cos(w)−2m−2dw

)
.

It is easy to show that for h ∈ $ and B[α, β] the beta function,

∫ π/2

0

cos(w)−2m−hdw =
1

2

∫ 1

0

u1/2−1(1 − u)−m−h/2−1/2du

=
1

2
B[1/2,−m− h/2 + 1/2],

which gives the desired result. For κ3 we have, κ3 = c(v−2)2
∫ ∞
0 θ3(1+θ2)mdθ

and we obtain

κ3 = c(v − 2)2

(∫ π/2

0

cos(w)−2m−3dcos(w) −
∫ π/2

0

cos(w)−2m−5dcos(w)

)
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=
c(v − 2)2

2

(∫ 1

0

u−m−3du −
∫ 1

0

u−m−2du

)

Finally, for κ4 we have κ4 = c(v − 2)5/2
∫ ∞

0
θ4(1 + θ2)mdθ and it is straightfor-

ward to show that,

κ4 = c(v − 2)5/2

∫ π/2

0

(
cos(w)−2m−6 − 2cos(w)−2m−4 + cos(w)−2m−2

)
dw

Using the previous results we obtain the desired expression.

Proof (Lemma 1): From Hansen (1994),
∫ ∞
−∞ xf(x; v,λ)dx = 0 and

∫ ∞

−∞
x2f(x; v,λ)dx = 1,

therefore α3 =
∫ ∞
−∞ x3f(x; v,λ)dx and α4 =

∫ ∞
−∞ x4f(x; v,λ)dx. First consider

α3. Note that

α3 =

∫ −a/b

−∞
x3bc

(
1 +

1

v − 2

(
bx + a

1 − λ

)2
)−(v+1)/2

dx

+

∫ ∞

−a/b

x3bc

(
1 +

1

v − 2

(
bx + a

1 + λ

)2
)−(v+1)/2

dx.

Let y = bx+a
1−λ on the first integral and y = bx+a

1+λ on the second integral. Then,

α3 =

∫ 0

−∞

(
1 − λ

b
y − a/b

)3

c

(
1 +

1

v − 2
y2

)−v+1
2

(1 − λ)dy

+

∫ ∞

0

(
1 + λ

b
y − a/b

)3

c

(
1 +

1

v − 2
y2

)−v+1
2

(1 + λ)dy.

Simple manipulations yield, α3 = 8κ3
b3 (λ3 + λ) − 6κ2a

b3 (λ3 + 3λ) + 12a2κ1
b3 λ −

a3+3a(1−λ)3

b3 , where κi for i = 1, 2, 3, 4 are as defined in Proposition 1. Using
the same transformations for α4, we have

α4 =
2λ5 + 20λ3 + 10λ

b4
(κ4) −

32aκ3

b4
(λ3 + λ) +

12a2κ2

b4
(λ3 + 3λ) − 16a3λκ1

b4

+
1

b4

(
a4 +

3(1 − λ)5(v − 2)

v − 4
+ 6a2(1 − λ)3

)

18 Studies in Nonlinear Dynamics & Econometrics Vol. 10 [2006], No. 2, Article 4

http://www.bepress.com/snde/vol10/iss2/art4



Proof (Lemma 2):

E(X|X > z) =

∫ ∞

z

xfX>z(x; v,λ)dx = (1 − F (z))−1

∫ ∞

z

xf(x; v,λ)dx.

Let I =
∫ ∞

z
xf(x; v,λ)dx and put y = bx+a

1+λ
, then

I =
(1 + λ)2

b

∫ ∞

α
xg(x; v)dx− (1 + λ)a

b

∫ ∞

α
g(x; v)dx (6.1)

where α = bz+a
1+λ and g(x; v) = c

(
1 + 1

v−2x2
)−(v+1)/2

. From Lemma 1,

∫ ∞

α

xg(x; v)dx =
c(v − 2)

2

∫ cos2(arctan(γ))

0

u(v+1)/2−2du (6.2)

where γ = (v − 2)−0.5α. Consequently,
∫

xg(x; v)dx = c(v−2)
v−1 β

v−1
2 . For the sec-

ond integral note that from Lemma 1, it is easy to show that
∫ ∞
α g(x; v)dx =

1 −
∫ α
−∞ g(x; v)dx = 1− Fs

(
bz+a
1+λ

√ v
v−2

)
, which combined with (6.2) and sub-

stituting back in (6.1) gives the desired expression.
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Appendix 2 - Tables and Graphs

Graph 1a conditional volatility based on
g1(x) and GARCH Model

Graph 1b conditional volatility based on
g2(x) and GARCH Model
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Graph 2a Bias ×100 on VaR using L-Moments with
n = 1000, λ = −0.25,

Volatility based on g1(x) for GARCH-t, Nonparametric

Graph 2b Bias ×100 on TailVaR using L-Moments with
n = 1000, λ = −0.25,

Volatility based on g1(x) for GARCH-t, Nonparametric
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Graph 2c Bias ×100 on VaR using L-Moments with
n = 1000, λ = −0.25,

Volatility based on g2(x) for GARCH-t, Nonparametric

Graph 2d Bias ×100 on TailVaR using L-Moments with
n = 1000, λ = −0.25,

Volatility based on g2(x) for GARCH-t, Nonparametric
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Graph 3 Returns for Dow 30 Industrial Stock price index,
VaR is estimated by Nonparametric/L-M and GARCH-T/L-M

methods
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Table 1 Numbering of Experiments
λ = 0, −0.25, −0.5 ; n = 500, 1000 ;Volatility based on

g1(x), g2(x)

Exp γ α k
1 0.3 0.99 60
2 0.3 0.99 100
3 0.3 0.95 60
4 0.3 0.95 100
5 0.6 0.99 60
6 0.6 0.99 100
7 0.6 0.95 60
8 0.6 0.95 100
9 0.9 0.99 60
10 0.9 0.99 100
11 0.9 0.95 60
12 0.9 0.95 100
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Table 2A Relative MSE for n = 1000, λ = 0,
Volatility based on g1(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE
1 1.322 1.429 2.360 2.348 2.790 2.888 2.888 3.058 2.838 2.957 2.882 3.076
2 1.290 1.285 1.964 1.783 2.538 2.531 2.588 2.552 2.552 2.572 2.493 2.484
3 1.063 1.088 1.285 1.294 2.781 2.783 2.502 2.522 2.821 2.818 2.500 2.538
4 1.056 1.038 1.305 1.218 2.586 2.599 2.531 2.543 2.752 2.753 2.688 2.706
5 1.117 1.178 1.472 1.572 1.528 1.613 1.726 1.926 1.511 1.602 1.685 1.874
6 1.179 1.180 1.653 1.590 1.457 1.513 1.675 1.757 1.519 1.555 1.685 1.749
7 1.057 1.060 1.088 1.099 1.409 1.415 1.412 1.431 1.549 1.559 1.548 1.591
8 1.078 1.062 1.189 1.141 1.599 1.596 1.611 1.624 1.550 1.545 1.558 1.568
9 1.159 1.262 1.500 1.788 1.076 1.210 1.591 1.928 1.193 1.329 1.691 1.973
10 1.145 1.192 1.547 1.609 0.983 1.051 1.504 1.598 1.249 1.273 1.707 1.754
11 1.073 1.114 1.111 1.265 0.951 0.982 0.995 1.099 1.024 1.049 1.078 1.192
12 1.026 1.039 1.032 1.030 1.034 1.043 1.008 1.004 1.106 1.116 1.110 1.107
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Table 2B Relative MSE for n = 1000, λ = −0.25,
Volatility based on g1(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE
1 1.284 1.384 2.271 2.177 2.481 2.597 2.409 2.534 2.694 2.802 2.526 2.668
2 1.225 1.247 1.656 1.541 2.729 2.720 2.510 2.462 2.927 2.933 2.605 2.583
3 1.081 1.091 1.257 1.379 2.838 2.844 2.771 2.875 3.211 3.214 3.112 3.188
4 1.032 1.035 1.187 1.173 2.861 2.863 2.943 2.966 3.146 3.139 3.186 3.179
5 1.125 1.214 1.378 1.505 1.511 1.576 1.724 1.861 2.154 2.197 2.282 2.355
6 1.140 1.147 1.517 1.499 1.776 1.808 1.899 1.912 1.885 1.891 2.064 2.056
7 1.021 1.031 1.080 1.101 1.396 1.401 1.375 1.377 1.791 1.807 1.752 1.781
8 1.081 1.094 1.236 1.288 1.648 1.679 1.660 1.751 1.783 1.813 1.780 1.871
9 1.096 1.266 1.381 1.612 1.148 1.245 1.408 1.567 1.253 1.368 1.502 1.678
10 1.184 1.230 1.573 1.603 1.043 1.087 1.447 1.528 1.304 1.337 1.688 1.743
11 1.097 1.103 1.058 1.150 1.088 1.098 1.002 1.061 1.178 1.187 1.089 1.180
12 1.049 1.060 1.101 1.122 1.063 1.073 1.052 1.098 1.084 1.096 1.055 1.090
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Table 2C Relative MSE for n = 1000, λ = −0.5,
Volatility based on g1(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE
1 1.177 1.209 1.768 1.706 2.775 2.848 2.766 2.881 3.470 3.516 3.284 3.387
2 1.209 1.226 1.395 1.377 1.393 1.401 1.413 1.418 1.427 1.443 1.435 1.447
3 1.003 1.009 1.199 1.206 2.501 2.510 2.322 2.360 3.239 3.247 2.971 3.020
4 1.017 1.042 1.169 1.202 2.797 2.791 2.734 2.754 3.714 3.681 3.500 3.493
5 1.062 1.142 1.296 1.475 1.438 1.553 1.453 1.625 1.700 1.792 1.647 1.796
6 1.081 1.126 1.224 1.223 1.392 1.411 1.350 1.367 1.624 1.639 1.505 1.523
7 1.006 1.012 1.046 1.050 1.355 1.355 1.297 1.322 1.610 1.617 1.521 1.549
8 1.011 1.021 1.099 1.124 1.136 1.127 1.138 1.137 1.319 1.312 1.308 1.313
9 1.087 1.264 1.830 1.754 1.010 1.150 1.349 1.579 1.728 1.798 1.910 2.036
10 1.078 1.128 1.303 1.345 0.946 0.969 1.169 1.177 1.088 1.094 1.270 1.256
11 1.006 1.012 1.009 1.044 0.788 0.795 0.661 0.731 0.893 0.897 0.731 0.786
12 0.962 0.969 0.974 0.995 0.935 0.940 0.866 0.881 1.452 1.445 1.313 1.337
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Table 2D Relative MSE for n = 1000, λ = 0,
Volatility based on g2(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE
1 1.077 1.107 1.370 1.354 3.492 3.570 3.453 3.440 3.805 3.912 3.653 3.645
2 1.073 1.125 1.326 1.344 6.857 6.852 6.368 6.337 8.578 8.603 7.939 7.951
3 0.987 0.996 1.051 1.077 4.169 4.191 4.428 4.287 5.030 5.056 5.274 5.134
4 1.017 1.025 1.065 1.066 3.596 3.645 3.449 3.441 4.295 4.345 4.011 3.996
5 1.039 1.058 1.255 1.353 1.662 1.667 1.886 1.897 1.885 1.918 1.971 2.081
6 1.062 1.073 1.358 1.388 1.740 1.753 1.977 2.031 2.151 2.201 2.270 2.425
7 1.013 1.021 1.033 1.066 3.221 3.242 3.116 3.148 2.376 2.391 2.309 2.353
8 1.000 1.000 1.021 1.018 1.192 1.199 1.237 1.245 1.368 1.376 1.413 1.428
9 1.104 1.256 1.404 1.695 0.869 0.997 1.354 1.604 1.068 1.188 1.481 1.752
10 1.102 1.162 1.381 1.457 0.980 0.997 1.384 1.390 1.065 1.083 1.434 1.423
11 1.070 1.067 1.040 1.101 0.819 0.836 0.867 1.005 1.043 1.051 1.052 1.164
12 1.044 1.041 1.055 1.069 0.738 0.754 0.772 0.804 0.920 0.922 0.943 0.947
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Table 2E Relative MSE for n = 1000, λ = −0.25,
Volatility based on g2(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE
1 1.092 1.116 1.371 1.390 6.007 6.054 5.471 5.392 7.197 7.289 6.495 6.318
2 1.054 1.061 1.245 1.257 3.945 3.958 3.576 3.635 4.650 4.688 4.096 4.195
3 1.019 1.018 1.035 1.052 3.702 3.736 3.724 3.750 3.819 3.856 3.771 3.789
4 1.010 1.013 1.077 1.067 3.026 3.040 3.227 3.226 3.753 3.792 3.855 3.856
5 1.060 1.111 1.308 1.378 1.273 1.336 1.505 1.567 1.606 1.694 1.772 1.866
6 1.070 1.083 1.270 1.229 2.071 2.067 2.053 2.043 3.329 3.336 3.036 3.039
7 1.032 1.034 1.084 1.115 1.844 1.851 1.967 1.991 3.219 3.230 3.135 3.159
8 1.039 1.035 1.120 1.112 1.482 1.506 1.515 1.494 1.807 1.822 1.811 1.816
9 1.132 1.264 3.247 2.039 0.929 1.141 1.476 1.852 0.995 1.187 1.500 1.834
10 1.089 1.119 1.390 1.405 0.870 0.903 1.253 1.256 0.936 1.002 1.255 1.309
11 1.014 1.025 1.019 1.115 0.850 0.858 0.833 0.912 0.989 0.999 0.939 1.001
12 1.010 1.016 1.073 1.079 0.803 0.800 0.856 0.888 1.156 1.159 1.140 1.143
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Table 2F Relative MSE for n = 1000, λ = −0.5,
Volatility based on g2(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE L-M MLE
1 0.991 1.022 1.120 1.164 4.309 4.347 3.586 3.614 5.098 5.135 4.180 4.233
2 1.086 1.089 1.415 1.200 3.326 3.341 2.877 2.878 3.884 3.894 3.362 3.335
3 1.005 1.007 1.055 1.075 7.276 7.304 7.219 7.202 11.126 11.087 10.536 10.201
4 0.989 0.988 1.068 1.030 3.886 3.895 3.753 3.772 4.816 4.836 4.614 4.627
5 1.044 1.073 1.178 1.212 1.358 1.395 1.364 1.403 2.099 2.117 1.980 1.988
6 1.086 1.085 1.198 1.180 1.419 1.425 1.327 1.336 1.900 1.916 1.668 1.692
7 1.009 1.020 1.030 1.053 1.478 1.478 1.411 1.427 2.047 2.058 1.899 1.918
8 1.008 1.016 1.074 1.078 1.413 1.425 1.323 1.332 2.085 2.110 1.921 1.924
9 1.070 1.129 1.441 1.512 0.748 0.848 1.087 1.273 1.039 1.085 1.302 1.433
10 0.928 0.931 1.010 0.982 0.663 0.675 0.861 0.846 0.780 0.785 0.942 0.908
11 0.987 0.996 1.278 1.311 0.782 0.789 0.745 0.797 0.900 0.908 0.830 0.890
12 1.019 1.016 1.093 1.090 0.787 0.806 0.770 0.835 1.718 1.711 0.514 1.579
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Table 3A MSE for λ = 0,
Volatility based on g1(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

n= n= n= n= n= n= n= n= n= n= n= n=
500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

1 0.219 0.134 0.805 0.572 0.350 0.283 0.965 0.700 0.354 0.288 0.964 0.699
2 0.197 0.139 0.696 0.510 0.306 0.273 0.767 0.672 0.333 0.274 0.844 0.647
3 0.055 0.034 0.149 0.098 0.107 0.088 0.242 0.190 0.113 0.089 0.254 0.190
4 0.049 0.035 0.143 0.100 0.098 0.086 0.221 0.194 0.102 0.091 0.231 0.205
5 0.349 0.220 1.206 0.678 0.405 0.301 1.366 0.795 0.444 0.297 1.418 0.776
6 0.343 0.238 1.145 0.775 0.367 0.294 1.067 0.785 0.401 0.307 1.121 0.790
7 0.086 0.068 0.217 0.156 0.115 0.091 0.286 0.203 0.122 0.100 0.291 0.223
8 0.094 0.065 0.275 0.167 0.115 0.097 0.292 0.226 0.123 0.094 0.313 0.219
9 1.330 0.619 5.870 2.137 1.012 0.575 5.375 2.267 1.093 0.637 5.525 2.409
10 1.145 0.614 3.589 2.080 0.987 0.527 3.360 2.022 1.016 0.670 3.426 2.296
11 0.303 0.168 0.797 0.441 0.251 0.149 0.637 0.395 0.252 0.161 0.641 0.428
12 0.266 0.165 0.792 0.424 0.230 0.167 0.595 0.414 0.244 0.178 0.658 0.456
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Table 3B MSE for λ = −0.25,
Volatility based on g1(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

n= n= n= n= n= n= n= n= n= n= n= n=
500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

1 0.120 0.088 0.442 0.334 0.200 0.170 0.486 0.354 0.217 0.185 0.498 0.371
2 0.133 0.078 0.370 0.239 0.206 0.175 0.467 0.363 0.230 0.187 0.488 0.376
3 0.041 0.022 0.111 0.052 0.082 0.058 0.166 0.115 0.107 0.066 0.217 0.129
4 0.042 0.022 0.107 0.051 0.072 0.061 0.149 0.126 0.162 0.067 0.297 0.137
5 0.207 0.144 0.796 0.366 0.240 0.194 0.611 0.458 0.337 0.277 0.741 0.607
6 0.198 0.131 0.543 0.369 0.235 0.204 0.592 0.462 0.258 0.216 0.604 0.502
7 0.074 0.046 0.156 0.104 0.086 0.064 0.179 0.132 0.093 0.081 0.194 0.168
8 0.061 0.043 0.142 0.100 0.098 0.066 0.198 0.134 0.117 0.072 0.232 0.144
9 0.610 0.341 2.143 1.067 0.526 0.357 1.888 1.087 0.585 0.390 1.969 1.160
10 0.696 0.357 2.044 1.097 0.606 0.314 1.756 1.009 2.193 0.393 3.820 1.178
11 0.168 0.110 0.450 0.231 0.150 0.110 0.354 0.219 0.166 0.119 0.380 0.238
12 0.187 0.129 0.436 0.286 0.179 0.130 0.406 0.273 0.220 0.133 0.496 0.274
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Table 3C MSE for λ = −0.5,
Volatility based on g1(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

n= n= n= n= n= n= n= n= n= n= n= n=
500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

1 0.072 0.039 0.204 0.105 0.145 0.091 0.247 0.164 0.475 0.114 0.631 0.194
2 0.086 0.096 0.219 0.183 0.123 0.110 0.201 0.186 0.143 0.113 0.218 0.188
3 0.026 0.020 0.061 0.043 0.046 0.051 0.079 0.084 0.059 0.066 0.102 0.107
4 0.029 0.016 0.076 0.031 0.047 0.043 0.079 0.072 0.057 0.057 0.091 0.093
5 0.104 0.072 0.322 0.172 0.123 0.098 0.248 0.192 0.161 0.115 0.300 0.218
6 0.116 0.083 0.275 0.167 0.126 0.106 0.237 0.184 0.182 0.124 0.297 0.206
7 0.042 0.034 0.079 0.063 0.058 0.046 0.095 0.078 0.091 0.054 0.149 0.091
8 0.049 0.041 0.108 0.075 0.074 0.046 0.120 0.078 0.106 0.053 0.179 0.089
9 0.297 0.180 0.865 0.581 0.242 0.168 0.661 0.428 0.337 0.287 0.808 0.606
10 0.442 0.205 1.067 0.496 0.272 0.180 0.685 0.445 0.360 0.207 0.788 0.483
11 0.103 0.095 0.230 0.202 0.094 0.075 0.179 0.132 0.137 0.085 0.245 0.146
12 0.143 0.073 0.257 0.133 0.115 0.071 0.201 0.119 0.124 0.110 0.213 0.180
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Table 3D MSE for λ = 0,
Volatility based on g2(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

n= n= n= n= n= n= n= n= n= n= n= n=
500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

1 0.182 0.126 0.461 0.319 0.632 0.410 1.616 0.803 0.410 0.446 0.942 0.849
2 0.196 0.119 0.514 0.293 0.367 0.763 0.741 1.408 0.579 0.954 1.326 1.755
3 0.052 0.033 0.117 0.074 0.160 0.140 0.359 0.313 0.186 0.169 0.394 0.372
4 0.050 0.035 0.121 0.081 0.184 0.123 0.385 0.261 0.217 0.147 0.429 0.304
5 0.302 0.259 0.767 0.665 0.372 0.414 0.995 1.000 0.646 0.470 1.673 1.045
6 0.318 0.253 0.796 0.660 0.506 0.415 1.196 0.961 0.530 0.512 1.193 1.103
7 0.103 0.075 0.239 0.167 0.120 0.238 0.284 0.504 0.138 0.176 0.313 0.374
8 0.104 0.077 0.242 0.166 0.202 0.091 0.450 0.201 0.219 0.105 0.467 0.230
9 1.256 0.551 4.547 1.802 0.708 0.434 2.882 1.737 0.894 0.533 3.148 1.901
10 1.004 0.557 3.801 1.840 0.765 0.495 2.702 1.845 0.882 0.538 2.954 1.911
11 0.269 0.166 0.798 0.368 0.178 0.127 0.532 0.307 0.220 0.162 0.615 0.372
12 0.247 0.143 0.609 0.368 0.164 0.101 0.477 0.270 0.238 0.126 0.630 0.329
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Table 3E MSE for λ = −0.25,
Volatility based on g2(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

n= n= n= n= n= n= n= n= n= n= n= n=
500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

1 0.099 0.070 0.396 0.165 0.475 0.386 0.919 0.659 0.479 0.463 0.903 0.783
2 0.126 0.075 0.386 0.164 0.308 0.281 0.516 0.471 0.348 0.332 0.557 0.540
3 0.036 0.027 0.075 0.053 0.149 0.098 0.283 0.191 0.179 0.102 0.326 0.193
4 0.032 0.029 0.069 0.060 0.150 0.087 0.276 0.180 0.146 0.107 0.267 0.215
5 0.222 0.152 0.568 0.356 0.249 0.183 0.601 0.410 0.412 0.231 0.786 0.482
6 0.228 0.149 0.491 0.334 0.325 0.288 0.635 0.540 0.612 0.463 1.154 0.798
7 0.070 0.057 0.146 0.114 0.097 0.102 0.195 0.208 0.123 0.179 0.238 0.331
8 0.077 0.056 0.163 0.117 0.093 0.080 0.186 0.158 0.134 0.097 0.251 0.189
9 0.509 0.294 1.577 1.969 0.443 0.241 1.544 0.895 0.521 0.258 1.634 0.910
10 0.551 0.290 1.750 0.935 0.458 0.232 1.508 0.843 0.574 0.249 1.631 0.844
11 0.158 0.095 0.365 0.207 0.144 0.080 0.316 0.169 0.156 0.093 0.333 0.191
12 0.155 0.090 0.362 0.201 0.116 0.071 0.290 0.160 0.767 0.103 1.479 0.214
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Table 3F MSE for λ = −0.5,
Volatility based on g2(x)

Exp Nonparametric GARCH-T GARCH-N
VaR TailVaR VaR TailVaR VaR TailVaR

n= n= n= n= n= n= n= n= n= n= n= n=
500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

1 0.062 0.044 0.131 0.089 0.137 0.192 0.214 0.284 0.160 0.227 0.235 0.330
2 0.068 0.041 0.135 0.095 0.186 0.124 0.251 0.194 0.234 0.145 0.308 0.227
3 0.025 0.019 0.046 0.033 0.077 0.137 0.125 0.227 0.079 0.210 0.126 0.331
4 0.026 0.017 0.046 0.033 0.104 0.068 0.161 0.114 0.121 0.084 0.187 0.141
5 0.133 0.088 0.281 0.164 0.160 0.115 0.284 0.190 0.227 0.177 0.365 0.275
6 0.121 0.099 0.255 0.194 0.161 0.129 0.266 0.215 0.206 0.173 0.310 0.270
7 0.045 0.039 0.092 0.068 0.056 0.057 0.093 0.094 0.108 0.080 0.169 0.126
8 0.049 0.044 0.093 0.081 0.063 0.062 0.101 0.100 0.095 0.091 0.146 0.145
9 0.236 0.179 1.734 0.458 0.208 0.125 0.569 0.346 0.370 0.174 0.791 0.414
10 0.288 0.167 1.262 0.394 0.193 0.119 0.621 0.336 0.219 0.140 0.630 0.368
11 0.086 0.062 0.168 0.150 0.082 0.049 0.149 0.087 0.197 0.057 0.327 0.097
12 0.095 0.062 0.194 0.119 0.066 0.048 0.128 0.084 0.085 0.104 0.161 0.165
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Table 4 Backtest results for α-VaR
numbers of violations and p-value (in brackets)

test length m − n = 500, expected violations = (m − n)(1 − α)

α = 0.95 Nonparametric GARCH-T GARCH-N
L-M MLE L-M MLE L-M MLE

Expect 25 25 25
Dow Jones 29 (0.412) 30 (0.305) 32 (0.151) 33 (0.101) 31 (0.218) 31 (0.218)
Microsoft 23 (0.682) 24 (0.837) 22 (0.538) 24 (0.837) 18 (0.151) 19 (0.218)
Nasdaq 21 (0.412) 19 (0.218) 23 (0.682) 22 (0.538) 21 (0.412) 20 (0.305)
S&P500 21 (0.412) 21 (0.412) 21 (0.412) 20 (0.305) 23 (0.682) 23 (0.682)

α = 0.99 Nonparametric GARCH-T GARCH-N
L-M MLE L-M MLE L-M MLE

Expect 5 5 5
Dow Jones 6 (0.653) 6 (0.653) 7 (0.369) 7 (0.369) 6 (0.653) 6 (0.653)
Microsoft 5 (1.000) 5 (1.000) 7 (0.369) 6 (0.653) 7 (0.369) 7 (0.369)
Nasdaq 5 (1.000) 5 (1.000) 8 (0.178) 9 (0.072) 8 (0.178) 8 (0.178)
S&P500 4 (0.653) 3 (0.369) 6 (0.653) 6 (0.653) 6 (0.653) 6 (0.653)
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Table 5 Backtest results for α-TailVaR
p-values of one-sided Bootstrap test

α = 0.95 Nonparametric GARCH-T GARCH-N
L-M MLE L-M MLE L-M MLE

Dow Jones 0.464 0.522 0.490 0.533 0.348 0.327
Microsoft 0.994 0.994 0.053 0.129 0.023 0.059
Nasdaq 0.248 0.082 0.113 0.033 0.030 0.010
S&P500 0.550 0.625 0.014 0.002 0.060 0.028

α = 0.99 Nonparametric GARCH-T GARCH-N
L-M MLE L-M MLE L-M MLE

Dow Jones 0.108 0.123 0.333 0.309 0.100 0.121
Microsoft 0.937 0.942 0.137 0.136 0.131 0.230
Nasdaq 0.108 0.072 0.117 0.052 0.045 0.014
S&P500 0.312 0.129 0.140 0.103 0.120 0.070

38 Studies in Nonlinear Dynamics & Econometrics Vol. 10 [2006], No. 2, Article 4

http://www.bepress.com/snde/vol10/iss2/art4



References

Aı̈t-Sahalia, Y. and M.W. Brandt (2001): “Variable selection for portfolio
choice,” Journal of Finance, 56, 1297-1355.

Andreou, E., N. Pittis and A. Spanos (2001): “On modelling speculative
prices: the empirical literature,” Journal of Economic Surveys, 15, 187-220.

Artzner, P., F. Delbaen, J. Eber, J. and D. Heath (1999): “Coherent mea-
sures of risk,” Mathematical Finance, 9, 203-228.

Basle Committee (1996): Overview of the ammendment of the capital ac-
cord to incorporate market risk. Basle Committee on Banking Supervision.

Bollerslev, T. (1986): “Generalized autoregressive conditional heterocedas-
ticity,” Journal of Econometrics, 31, 307-327.
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